MDS Abstracts

Abstracts from the International Congress of Parkinson’s and Movement Disorders.

MENU 
  • Home
  • Meetings Archive
    • 2025 International Congress
    • 2024 International Congress
    • 2023 International Congress
    • 2022 International Congress
    • MDS Virtual Congress 2021
    • MDS Virtual Congress 2020
    • 2019 International Congress
    • 2018 International Congress
    • 2017 International Congress
    • 2016 International Congress
  • Keyword Index
  • Resources
  • Advanced Search

Antisense Oligonucleotide Treatment in Ataxia-Telangiectasia

C. de Gusmao, C. Achkar, B. Ahtam, C. Berde, L. Bush, D. Chin, B. Darras, K. Faour, D. Friedmann, B. Gagoski, B. Goodlett, E. Grant, A. Gupta, S. Hills, A. Hu, J. Kim, A. Kuniholm, C. Lentucci, J. Lopes, E. Lopez, A. Luddy, B. Margus, M. Meserve, V. Natale, T. Nakayama, A. O’Connor, C. Rabideau, O. Riccardi, R. Schule, E. Sherril, L. Solo, A. Soucy, V. Suslovitch, M. Synofzik, J. Thornton, T. Yu (Boston, USA)

Meeting: 2025 International Congress

Keywords: Ataxia: Genetics, Ataxia: Treatment

Category: Pediatric Movement Disorders

Objective: Describe results of an antisense oligonucleotide (ASO) treatment trial in a patient with ataxia-telangiectasia (AT).

Background: AT is a neurodegenerative, incurable disease of children caused by biallelic variants in the ATM gene. Affected individuals exhibit cerebellar degeneration, immunodeficiency and susceptibility to cancer. The treated subject harbors biallelic pathogenic variants on ATM (NM_000051.3: c.8585-13_8598del and c.7865C>T; p.Ala2622Val) and was referred by ATCP, a family advocacy foundation. The c.7865C>T variant creates a novel splice donor site, truncating the reading frame. Atipeksen, an allele-specific ASO, restores normal splicing in cells with c.7865C>T variant.

Method: Protocol design and dosing were conceived based on an ASO with similar chemistry (nusinersen) accumulated experience. The primary clinical endpoint was the AT-NEST scale. Secondary outcomes included structured global impression of change, physical, occupational therapy and neuropsychological scales. Biomarkers included serum and cerebrospinal fluid neurofilament light chain (NfL), serum alfafetoprotein (AFP), MR imaging with volumetric assessments and digital wearable sensors.

Results: Investigational treatment started at 2 years and 10 months old. ASO was administered intrathecally with escalation, loading and maintenance phases and has been ongoing for 5 years. No serious adverse events were encountered during the trial. Safety-related findings included elevated CSF opening pressure measurements and contrast enhancement of cranial and spinal nerves, both without clear correlation to clinical symptoms. The subject has steady gains in motor development.  She outperforms cohorts of age-matched and genotype-matched individuals with classic  AT (FIGURES 1 AND 2).  NfL were stable and AFP did not rise, as usually observed in AT (FIGURE 3). Digital wearables are comparable to mildly affected individuals  (FIGURE 4). There were no volumetric changes in cerebellar volume compared to untreated AT children.

Conclusion: Results demonstrate encouraging signs of efficacy, in clinical and biomarker endpoints.  A limitation of this work is that intrathecal ASO treatment is not expected to impact systemic manifestations of AT.  Nevertheless, our results provide hope that variant-specific, splice-switching ASOs may be a treatment option to mitigate neurological decline in individuals with candidate variants in ATM.

Figure 1

Figure 1

Figure 2

Figure 2

Figure 3

Figure 3

Figure 4

Figure 4

References: 1. Savitsky K, Bar-Shira A, Gilad S, et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science [Internet] 1995 [cited 2023 May 14];268(5218):1749–53. Available from: https://pubmed.ncbi.nlm.nih.gov/7792600/
2. Nissenkorn A, Ben-Zeev B. Ataxia telangiectasia. Handb Clin Neurol [Internet] 2015;132:199–214. Available from: https://www.sciencedirect.com/science/article/pii/B9780444627025000147?via%3Dihub&fbclid=IwAR1nNF-KQitzzYxUJd1FFQPkXXwJC6vs-L5O7eQNwFkExGsHmzK1nVO37T0
3. Thieffry S, Arthuis M, Farkas-Bargeton E, Vinh LT. L’ataxie-télangiectasie. Une observation anatomo-clinique familiale. Ann Pediatr (Paris) [Internet] 1966 [cited 2021 Feb 13];13(12):749–62. Available from: https://pubmed.ncbi.nlm.nih.gov/5990118/
4. Boder E, Sedgwick RP. Ataxia-telengiectasia: A Famalial Syndrome of Progressive Cerebellar Ataxia, Oculocutaneous Telangiectasia and Frequent Pulmonary Infection. Pediatrics 1958;21(April):526–33.
5. Petley E, Yule A, Alexander S, Ojha S, Whitehouse WP. The natural history of ataxia-telangiectasia (A-T): A systematic review. PLoS One [Internet] 2022 [cited 2024 Sep 15];17(3). Available from: https://pubmed.ncbi.nlm.nih.gov/35290391/
6. Rothblum-Oviatt C, Wright J, Lefton-Greif MA, McGrath-Morrow SA, Crawford TO, Lederman HM. Ataxia-telangiectasia: A review. Orphanet J Rare Dis [Internet] 2016;11(159):1–21. Available from: http://dx.doi.org/10.1186/s13023-016-0543-7
7. Schon K, van Os NJH, Oscroft N, et al. Genotype, extrapyramidal features, and severity of variant ataxia-telangiectasia. Ann Neurol 2019;85(2):170–80.
8. Micol R, Ben Slama L, Suarez F, et al. Morbidity and mortality from ataxia-telangiectasia are associated with ATM genotype. J Allergy Clin Immunol [Internet] 2011 [cited 2023 May 14];128(2). Available from: https://pubmed.ncbi.nlm.nih.gov/21665257/
9. Crawford TO, Skolasky RL, Fernandez R, Rosquist KJ, Lederman HM. Survival probability in ataxia telangiectasia. Arch Dis Child 2006;91(7):610–1.
10. Kim J, Woo S, de Gusmao CM, et al. A framework for individualized splice-switching oligonucleotide therapy. Nature [Internet] 2023;Jul12 Epub. Available from: https://www.nature.com/articles/s41586-023-06277-0
11. Mallott J, Kwan A, Church J, et al. Newborn screening for SCID identifies patients with ataxia telangiectasia. J Clin Immunol [Internet] 2013 [cited 2024 Sep 17];33(3):540–9. Available from: https://pubmed.ncbi.nlm.nih.gov/23264026/
12. Teraoka SN, Telatar M, Becker-Catania S, et al. Splicing defects the ataxia-telangiectasia gene, ATM: Underlying mutations and consequences. Am J Hum Genet 1999;64(6):1617–31.
13. Heinrich T, Prowald C, Friedl R, et al. Exclusion/confirmation of ataxia-telangiectasia via cell-cycle testing. Eur J Pediatr [Internet] 2006 [cited 2024 Nov 17];165(4):250–7. Available from: https://pubmed.ncbi.nlm.nih.gov/16411093/
14. Vural A, Şimşir G, Tekgül Ş, et al. The Complex Genetic Landscape of Hereditary Ataxias in Turkey and Implications in Clinical Practice. Mov Disord [Internet] 2021 [cited 2024 Nov 17];36(7):1676–88. Available from: https://pubmed.ncbi.nlm.nih.gov/33624863/
15. Cheerie D, Meserve M, Beijer D, et al. Consensus guidelines for eligibility assessment of pathogenic variants to antisense oligonucleotide treatments. medRxiv [Internet] 2024 [cited 2024 Nov 8];2024.09.27.24314122. Available from: https://www.medrxiv.org/content/10.1101/2024.09.27.24314122v1
16. Kim J, Hu C, El Achkar CM, et al. Patient-customized oligonucleotide therapy for a rare genetic disease. New England Journal of Medicine 2019;381(17):1644–52.
17. Finkel RS, Chiriboga CA, Vajsar J, et al. Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet [Internet] 2016 [cited 2023 Jun 15];388(10063):3017–26. Available from: https://pubmed.ncbi.nlm.nih.gov/27939059/
18. Nissenkorn A, Borgohain R, Micheli R, et al. Development of global rating instruments for pediatric patients with ataxia telangiectasia. European Journal of Paediatric Neurology [Internet] 2016;20(1):140–6. Available from: http://dx.doi.org/10.1016/j.ejpn.2015.09.002
19. Crawford TO, Mandir AS, Lefton-Greif MA, et al. Quantitative neurologic assessment of ataxia-telangiectasia. Neurology [Internet] 2000;54:1505–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10751267
20. Jackson TJ, Chow G, Suri M, Byrd P, Taylor MR, Whitehouse WP. Longitudinal analysis of the neurological features of ataxia-telangiectasia. Dev Med Child Neurol [Internet] 2016 [cited 2019 May 28];58(7):690–7. Available from: http://doi.wiley.com/10.1111/dmcn.13052
21. Veenhuis SJG, Gupta AS, de Gusmão CM, et al. Neurofilament light chain: A novel blood biomarker in patients with ataxia telangiectasia. Eur J Paediatr Neurol [Internet] 2021 [cited 2023 Jun 15];32:93–7. Available from: https://pubmed.ncbi.nlm.nih.gov/33878608/
22. Sahama I, Sinclair K, Pannek K, Lavin M, Rose S. Radiological imaging in ataxia telangiectasia: A review. Cerebellum 2014;13(4):521–30.
23. Gupta AS, Luddy AC, Khan NC, Reiling S, Thornton JK. Real-life Wrist Movement Patterns Capture Motor Impairment in Individuals with Ataxia-Telangiectasia. Cerebellum [Internet] 2023 [cited 2023 Jun 15];22(2):261–71. Available from: https://pubmed.ncbi.nlm.nih.gov/35294727/
24. Dineen RA, Raschke F, McGlashan HL, et al. Multiparametric cerebellar imaging and clinical phenotype in childhood ataxia telangiectasia. Neuroimage Clin 2020;25.
25. Cole TJ, Green PJ. Smoothing reference centile curves: The lms method and penalized likelihood. Stat Med 1992;11(10):1305–19.
26. Avery RA, Shah SS, Licht DJ, Seiden JA. Reference Range for Cerebrospinal Fluid Opening Pressure in Children. New England Journal of Medicine 2010;369(9):891–3.
27. Stewart E, Prayle AP, Tooke A, et al. Growth and nutrition in children with ataxia telangiectasia. Arch Dis Child [Internet] 2016 [cited 2024 Sep 8];101(12):1137–41. Available from: https://pubmed.ncbi.nlm.nih.gov/27573920/
28. Natale VAI, Cole TJ, Rothblum-Oviatt C, et al. Growth in ataxia telangiectasia. Orphanet J Rare Dis [Internet] 2021 [cited 2024 Sep 8];16(1). Available from: https://pubmed.ncbi.nlm.nih.gov/33691726/
29. Khalil M, Teunissen CE, Otto M, et al. Neurofilaments as biomarkers in neurological disorders. Nat Rev Neurol [Internet] 2018;14(10):577–89. Available from: http://dx.doi.org/10.1038/s41582-018-0058-z
30. Donath H, Woelke S, Schubert R, et al. Neurofilament Light Chain Is a Biomarker of Neurodegeneration in Ataxia Telangiectasia. Cerebellum [Internet] 2022 [cited 2024 Sep 9];21(1):39–47. Available from: https://pubmed.ncbi.nlm.nih.gov/33893614/
31. Stray-Pedersen A, Borresen-Dale AL, Paus E, Lindman CR, Burgers T, Abrahamsen TG. Alpha fetoprotein is increasing with age in ataxia-telangiectasia. Eur J Paediatr Neurol [Internet] 2007 [cited 2024 Nov 14];11(6):375–80. Available from: https://pubmed.ncbi.nlm.nih.gov/17540590/
32. Khan NC, Pandey V, Gajos KZ, Gupta AS. Free-Living Motor Activity Monitoring in Ataxia-Telangiectasia. Cerebellum [Internet] 2022 [cited 2024 Sep 15];21(3):368–79. Available from: https://pubmed.ncbi.nlm.nih.gov/34302287/
33. McGlashan HL, Blanchard C V., Luscombe C, et al. Quality of life and neurological disability in children and young people with ataxia telangiectasia. Eur J Paediatr Neurol [Internet] 2022 [cited 2024 Sep 9];40:34–9. Available from: https://pubmed.ncbi.nlm.nih.gov/35932633/
34. Nissenkorn A, Hassin-Baer S, Lerman SF, Levi YB, Tzadok M, Ben-Zeev B. Movement disorder in ataxia-telangiectasia: Treatment with amantadine Sulfate. J Child Neurol 2013;28(2):155–60.
35. Presterud R, Deng WH, Wennerström AB, et al. Long-Term Nicotinamide Riboside Use Improves Coordination and Eye Movements in Ataxia Telangiectasia. Mov Disord [Internet] 2024 [cited 2024 Sep 8];39(2):360–9. Available from: https://pubmed.ncbi.nlm.nih.gov/37899683/
36. van Os NJH, Haaxma CA, van der Flier M, et al. Ataxia-telangiectasia: recommendations for multidisciplinary treatment. Dev Med Child Neurol [Internet] 2017 [cited 2020 Sep 30];59(7):680–9. Available from: https://pubmed.ncbi.nlm.nih.gov/28318010/
37. Zielen S, Crawford T, Benatti L, et al. Safety and efficacy of intra-erythrocyte dexamethasone sodium phosphate in children with ataxia telangiectasia (ATTeST): a multicentre, randomised, double-blind, placebo-controlled phase 3 trial. Lancet Neurol [Internet] 2024 [cited 2024 Sep 8];23(9):871–82. Available from: https://pubmed.ncbi.nlm.nih.gov/39152028/
38. Jackson TJ, Chow G, Suri M, Byrd P, Taylor MR, Whitehouse WP. Longitudinal analysis of the neurological features of ataxia-telangiectasia. Dev Med Child Neurol [Internet] 2016 [cited 2024 Sep 9];58(7):690–7. Available from: https://pubmed.ncbi.nlm.nih.gov/26896183/
39. Gaetani L, Blennow K, Calabresi P, Di Filippo M, Parnetti L, Zetterberg H. Neurofilament light chain as a biomarker in neurological disorders. J Neurol Neurosurg Psychiatry [Internet] 2019 [cited 2024 Nov 14];90(8):870–81. Available from: https://pubmed.ncbi.nlm.nih.gov/30967444/
40. Ishiguro T, Taketa K, Gatti RA. Tissue of origin of elevated alpha-fetoprotein in ataxia-telangiectasia. Dis Markers 1986;4(4):293–7.
41. Theis M, Donath H, Woelke S, et al. Peripheral polyneuropathy in children and young adults with ataxia-telangiectasia. Eur J Neurol [Internet] 2023 [cited 2024 Sep 8];30(12):3842–53. Available from: https://pubmed.ncbi.nlm.nih.gov/37540892/
42. Stoker TB, Andresen KER, Barker RA. Hydrocephalus Complicating Intrathecal Antisense Oligonucleotide Therapy for Huntington’s Disease. Mov Disord [Internet] 2021 [cited 2024 Sep 9];36(1):263–4. Available from: https://pubmed.ncbi.nlm.nih.gov/33125799/

To cite this abstract in AMA style:

C. de Gusmao, C. Achkar, B. Ahtam, C. Berde, L. Bush, D. Chin, B. Darras, K. Faour, D. Friedmann, B. Gagoski, B. Goodlett, E. Grant, A. Gupta, S. Hills, A. Hu, J. Kim, A. Kuniholm, C. Lentucci, J. Lopes, E. Lopez, A. Luddy, B. Margus, M. Meserve, V. Natale, T. Nakayama, A. O’Connor, C. Rabideau, O. Riccardi, R. Schule, E. Sherril, L. Solo, A. Soucy, V. Suslovitch, M. Synofzik, J. Thornton, T. Yu. Antisense Oligonucleotide Treatment in Ataxia-Telangiectasia [abstract]. Mov Disord. 2025; 40 (suppl 1). https://www.mdsabstracts.org/abstract/antisense-oligonucleotide-treatment-in-ataxia-telangiectasia/. Accessed October 5, 2025.
  • Tweet
  • Click to email a link to a friend (Opens in new window) Email
  • Click to print (Opens in new window) Print

« Back to 2025 International Congress

MDS Abstracts - https://www.mdsabstracts.org/abstract/antisense-oligonucleotide-treatment-in-ataxia-telangiectasia/

Most Viewed Abstracts

  • This Week
  • This Month
  • All Time
  • What is the appropriate sleep position for Parkinson's disease patients with orthostatic hypotension in the morning?
  • Covid vaccine induced parkinsonism and cognitive dysfunction
  • Life expectancy with and without Parkinson’s disease in the general population
  • Increased Risks of Botulinum Toxin Injection in Patients with Hypermobility Ehlers Danlos Syndrome: A Case Series
  • AI-Powered Detection of Freezing of Gait Using Wearable Sensor Data in Patients with Parkinson’s Disease
  • Effect of Ketone Ester Supplementation on Motor and Non-Motor symptoms in Parkinson's Disease
  • Covid vaccine induced parkinsonism and cognitive dysfunction
  • What is the appropriate sleep position for Parkinson's disease patients with orthostatic hypotension in the morning?
  • Life expectancy with and without Parkinson’s disease in the general population
  • Increased Risks of Botulinum Toxin Injection in Patients with Hypermobility Ehlers Danlos Syndrome: A Case Series
  • Increased Risks of Botulinum Toxin Injection in Patients with Hypermobility Ehlers Danlos Syndrome: A Case Series
  • Insulin dependent diabetes and hand tremor
  • Improvement in hand tremor following carpal tunnel release surgery
  • Impact of expiratory muscle strength training (EMST) on phonatory performance in Parkinson's patients
  • Help & Support
  • About Us
  • Cookies & Privacy
  • Wiley Job Network
  • Terms & Conditions
  • Advertisers & Agents
Copyright © 2025 International Parkinson and Movement Disorder Society. All Rights Reserved.
Wiley