MDS Abstracts

Abstracts from the International Congress of Parkinson’s and Movement Disorders.

MENU 
  • Home
  • Meetings Archive
    • 2024 International Congress
    • 2023 International Congress
    • 2022 International Congress
    • MDS Virtual Congress 2021
    • MDS Virtual Congress 2020
    • 2019 International Congress
    • 2018 International Congress
    • 2017 International Congress
    • 2016 International Congress
  • Keyword Index
  • Resources
  • Advanced Search

Disease Modeling of DYT1 Using Patient Induced Pluripotent Stem Cells

A. Dinasarapu, D. Sutcliffe, M. Zwick, H. Jinnah (Atlanta, GA, USA)

Meeting: 2018 International Congress

Abstract Number: 701

Keywords: Dystonia: Pathophysiology, Stem cells. See also Human embryonic stem cells

Session Information

Date: Sunday, October 7, 2018

Session Title: Dystonia

Session Time: 1:45pm-3:15pm

Location: Hall 3FG

Objective: To create a resource of induced pluripotent stem cells (iPSCs) as models for exploring mechanisms of pathogenesis in DYT1 dystonia.

Background: DYT1 an autosomal dominant early-onset movement disorder characterized by involuntary muscle contractions which force body parts into abnormal postures and or movements. DYT1 is caused by a 3-base-pair deletion (GAG mutation) in the Torsin1A gene. The function of the Torsin1A protein is only partially understood, but many studies point to a problem with dopaminergic neuron function.

Methods: Fibroblasts from 3 healthy controls and 3 DYT1 patients(with GAG mutations in Torsin1A) were reprogrammed to iPSCs. Two independent lines were created for each case. Immunocytochemistry was performed on iPSCs to confirm expression of pluripotency markers. We nest confirmed the karyotype of the iPSCs. Pluripotency was verified by testing ability to differentiate to the three germ layers: ectoderm, mesoderm, and endoderm. Gene expression and protein composition profiles were then determined for iPSCs from cases and controls.

Results: All 12 lines had immunostaining profiles consistent with pluripotency, and possessed the ability to differentiate into all 3 germ layers. All lines had normal karyotypes. All lines expressed high levels of genes typical of pluripotent cells. RNA-Seq identified a total of 81 differentially expressed genes between DYT1 and healthy controls with nominal p<0.001. After correcting for multiple comparisons, none of the genes remained significantly differentially expressed at a FDR<0.1. Studies addressing protein expression profiles and metabolic abnormalities are underway, as well as studies addressing their ability to differentiate into neurons.

Conclusions: We have validated multiple iPSC lines from patients with LND and matched controls. The lines from patients show consistent abnormalities in gene expression profiles and are being used now to evaluate dopamine neuron function.

To cite this abstract in AMA style:

A. Dinasarapu, D. Sutcliffe, M. Zwick, H. Jinnah. Disease Modeling of DYT1 Using Patient Induced Pluripotent Stem Cells [abstract]. Mov Disord. 2018; 33 (suppl 2). https://www.mdsabstracts.org/abstract/disease-modeling-of-dyt1-using-patient-induced-pluripotent-stem-cells/. Accessed June 14, 2025.
  • Tweet
  • Click to email a link to a friend (Opens in new window) Email
  • Click to print (Opens in new window) Print

« Back to 2018 International Congress

MDS Abstracts - https://www.mdsabstracts.org/abstract/disease-modeling-of-dyt1-using-patient-induced-pluripotent-stem-cells/

Most Viewed Abstracts

  • This Week
  • This Month
  • All Time
  • Humor processing is affected by Parkinson’s disease and levodopa
      • Help & Support
      • About Us
      • Cookies & Privacy
      • Wiley Job Network
      • Terms & Conditions
      • Advertisers & Agents
      Copyright © 2025 International Parkinson and Movement Disorder Society. All Rights Reserved.
      Wiley