MDS Abstracts

Abstracts from the International Congress of Parkinson’s and Movement Disorders.

MENU 
  • Home
  • Meetings Archive
    • 2025 International Congress
    • 2024 International Congress
    • 2023 International Congress
    • 2022 International Congress
    • MDS Virtual Congress 2021
    • MDS Virtual Congress 2020
    • 2019 International Congress
    • 2018 International Congress
    • 2017 International Congress
    • 2016 International Congress
  • Keyword Index
  • Resources
  • Advanced Search

Differentiating Parkinsonism and related diseases by specific Parkinsonism patterns

JX. Wang, B. Wang, XH. Chen, W. Luo (Hangzhou, China)

Meeting: 2025 International Congress

Keywords: Parkinson’s, Parkinsonism

Category: Parkinson's Disease: Pathophysiology / molecular mechanisms of disease

Objective: This study aimed to identify characteristic parkinsonism patterns across PD, MSA and PSP, and evaluate their utility in early differentiation.

Background: Parkinson’s disease (PD), multiple system atrophy (MSA), and progressive supranuclear palsy (PSP) are neurodegenerative disorders sharing overlapping parkinsonism features in early stages, posing significant challenges to differential diagnosis. Early and accurate discrimination among these entities is critical for tailored therapeutic interventions and prognostic stratification.

Method: A multicenter cohort of 297 patients (PD: n=130; PSP: n=105; MSA-P: n=62) underwent standardized assessments using the Movement Disorder Society Unified Parkinson’s Disease Rating Scale Part III (MDS-UPDRS-III) and levodopa challenge tests. Six motor subdomains were analyzed: tremor, bradykinesia-rigidity, axial symptoms, gait dysfunction, laterality, and dopaminergic responsiveness. Between-group differences were assessed via ANCOVA with disease duration. Softmax regression models were constructed for diagnostic classification.

Results: Distinct phenotypic trajectories emerged: PD exhibited milder motor deficits with prolonged disease duration, MSA-P demonstrated rapid disability progression (shortest survival), while PSP showed male predominance and later symptom onset. Axial symptom burden and gait dysfunction provided robust diagnostic discrimination. Post-levodopa axial improvement ≥30% strongly favored PD over atypical parkinsonism (APD, p<0.001). PSP-RS displayed predominant axial/gait involvement (68.7% of total MDS-UPDRS-III scores vs. 41.2% in PD, p<0.001) with minimal levodopa response. Tremor asymmetry (left-right difference >5 points) and lower limb sparing effectively distinguished PD from APD (AUC=0.89). Bradykinesia-rigidity severity correlated with global disability progression (r=0.76, p=0.003).

Conclusion: Quantitative analysis of parkinsonism patterns, PD, MSA-P, and PSP can be effectively distinguished.. Key indicators include: 1) axial symptom levodopa responsiveness for PD vs. APD; 2) axial/gait predominance for PSP; 3) asymmetric tremor and lower limb sparing for PD identification.

fig1

fig1

fig2

fig2

fig3

fig3

fjg4

fjg4

Three Components Significantly Associated with PSP

Three Components Significantly Associated with PSP

References: [1] Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017 [J]. Lancet, 2018, 392(10159): 1789-858.
[2] DORSEY E R, SHERER T, OKUN M S, et al. The Emerging Evidence of the Parkinson Pandemic [J]. J Parkinsons Dis, 2018, 8(s1): S3-s8.
[3] PEREZ-PARDO P, KLIEST T, DODIYA H B, et al. The gut-brain axis in Parkinson’s disease: Possibilities for food-based therapies [J]. Eur J Pharmacol, 2017, 817: 86-95.
[4] SHAHMORADIAN S H, LEWIS A J, GENOUD C, et al. Lewy pathology in Parkinson’s disease consists of crowded organelles and lipid membranes [J]. Nat Neurosci, 2019, 22(7): 1099-109.
[5] CHU Y, HIRST W D, FEDEROFF H J, et al. Nigrostriatal tau pathology in parkinsonism and Parkinson’s disease [J]. Brain, 2024, 147(2): 444-57.
[6] AARSLAND D, BATZU L, HALLIDAY G M, et al. Parkinson disease-associated cognitive impairment [J]. Nat Rev Dis Primers, 2021, 7(1): 47.
[7] ZAMAN V, SHIELDS D C, SHAMS R, et al. Cellular and molecular pathophysiology in the progression of Parkinson’s disease [J]. Metab Brain Dis, 2021, 36(5): 815-27.
[8] SCHAPIRA A H V, CHAUDHURI K R, JENNER P. Non-motor features of Parkinson disease [J]. Nat Rev Neurosci, 2017, 18(7): 435-50.
[9] BEACH T G, ADLER C H. Importance of low diagnostic Accuracy for early Parkinson’s disease [J]. Mov Disord, 2018, 33(10): 1551-4.
[10] WENNING G K, JELLINGER K A. The role of alpha-synuclein in the pathogenesis of multiple system atrophy [J]. Acta Neuropathol, 2005, 109(2): 129-40.
[11] WENNING G K, GESER F, KRISMER F, et al. The natural history of multiple system atrophy: a prospective European cohort study [J]. Lancet Neurol, 2013, 12(3): 264-74.
[12] DUTTA S, HORNUNG S, KRUAYATIDEE A, et al. α-Synuclein in blood exosomes immunoprecipitated using neuronal and oligodendroglial markers distinguishes Parkinson’s disease from multiple system atrophy [J]. Acta Neuropathol, 2021, 142(3): 495-511.
[13] WILLIAMS D R, LEES A J. Progressive supranuclear palsy: clinicopathological concepts and diagnostic challenges [J]. Lancet Neurol, 2009, 8(3): 270-9.
[14] RESPONDEK G, STAMELOU M, KURZ C, et al. The phenotypic spectrum of progressive supranuclear palsy: a retrospective multicenter study of 100 definite cases [J]. Mov Disord, 2014, 29(14): 1758-66.
[15] WILLIAMS D R, LEES A J. What features improve the accuracy of the clinical diagnosis of progressive supranuclear palsy-parkinsonism (PSP-P)? [J]. Mov Disord, 2010, 25(3): 357-62.
[16] MAHALE R R, KRISHNAN S, DIVYA K P, et al. Subtypes of PSP and Prognosis: A Retrospective Analysis [J]. Ann Indian Acad Neurol, 2021, 24(1): 56-62.
[17] KOVACS G G, LUKIC M J, IRWIN D J, et al. Distribution patterns of tau pathology in progressive supranuclear palsy [J]. Acta Neuropathol, 2020, 140(2): 99-119.
[18] ALI F, MARTIN P R, BOTHA H, et al. Sensitivity and Specificity of Diagnostic Criteria for Progressive Supranuclear Palsy [J]. Mov Disord, 2019, 34(8): 1144-53.
[19] BARER Y, CHODICK G, COHEN R, et al. Epidemiology of Progressive Supranuclear Palsy: Real World Data from the Second Largest Health Plan in Israel [J]. Brain Sci, 2022, 12(9).
[20] ARENA J E, WEIGAND S D, WHITWELL J L, et al. Progressive supranuclear palsy: progression and survival [J]. J Neurol, 2016, 263(2): 380-9.
[21] PHILLIPS B, WESTERN D, WANG L, et al. Proteome wide association studies of LRRK2 variants identify novel causal and druggable proteins for Parkinson’s disease [J]. NPJ Parkinsons Dis, 2023, 9(1): 107.
[22] GONZáLEZ-RODRíGUEZ P, ZAMPESE E, STOUT K A, et al. Disruption of mitochondrial complex I induces progressive parkinsonism [J]. Nature, 2021, 599(7886): 650-6.
[23] CHANG A, XIANG X, WANG J, et al. Homotypic fibrillization of TMEM106B across diverse neurodegenerative diseases [J]. Cell, 2022, 185(8): 1346-55.e15.
[24] SCHWEIGHAUSER M, SHI Y, TARUTANI A, et al. Structures of α-synuclein filaments from multiple system atrophy [J]. Nature, 2020, 585(7825): 464-9.
[25] MILLER-PATTERSON C, BUESA R, MCLAUGHLIN N, et al. Motor asymmetry over time in Parkinson’s disease [J]. J Neurol Sci, 2018, 393: 14-7.
[26] KöLLENSPERGER M, GESER F, SEPPI K, et al. Red flags for multiple system atrophy [J]. Mov Disord, 2008, 23(8): 1093-9.
[27] SU D, YANG S, HU W, et al. The Characteristics of Tremor Motion Help Identify Parkinson’s Disease and Multiple System Atrophy [J]. Front Neurol, 2020, 11: 540.
[28] FUJIOKA S, ALGOM A A, MURRAY M E, et al. Tremor in progressive supranuclear palsy [J]. Parkinsonism Relat Disord, 2016, 27: 93-7.
[29] WEN Y, YANG Q, JIAO B, et al. Clinical features of progressive supranuclear palsy [J]. Front Aging Neurosci, 2023, 15: 1229491.
[30] RACCAGNI C, NONNEKES J, BLOEM B R, et al. Gait and postural disorders in parkinsonism: a clinical approach [J]. J Neurol, 2020, 267(11): 3169-76.
[31] LOW P A, REICH S G, JANKOVIC J, et al. Natural history of multiple system atrophy in the USA: a prospective cohort study [J]. Lancet Neurol, 2015, 14(7): 710-9.
[32] O’SULLIVAN S S, MASSEY L A, WILLIAMS D R, et al. Clinical outcomes of progressive supranuclear palsy and multiple system atrophy [J]. Brain, 2008, 131(Pt 5): 1362-72.
[33] BOHNEN N I, JAHN K. Imaging: What can it tell us about parkinsonian gait? [J]. Mov Disord, 2013, 28(11): 1492-500.
[34] TATTERSALL T L, STRATTON P G, COYNE T J, et al. Imagined gait modulates neuronal network dynamics in the human pedunculopontine nucleus [J]. Nat Neurosci, 2014, 17(3): 449-54.
[35] PELLEGRINI F, POZZI N G, PALMISANO C, et al. Cortical networks of parkinsonian gait: a metabolic and functional connectivity study [J]. Ann Clin Transl Neurol, 2024.
[36] FLING B W, COHEN R G, MANCINI M, et al. Asymmetric pedunculopontine network connectivity in parkinsonian patients with freezing of gait [J]. Brain, 2013, 136(Pt 8): 2405-18.
[37] POSTUMA R B, BERG D, STERN M, et al. MDS clinical diagnostic criteria for Parkinson’s disease [J]. Mov Disord, 2015, 30(12): 1591-601.
[38] HöGLINGER G U, RESPONDEK G, STAMELOU M, et al. Clinical diagnosis of progressive supranuclear palsy: The movement disorder society criteria [J]. Mov Disord, 2017, 32(6): 853-64.
[39] WENNING G K, STANKOVIC I, VIGNATELLI L, et al. The Movement Disorder Society Criteria for the Diagnosis of Multiple System Atrophy [J]. Mov Disord, 2022, 37(6): 1131-48.
[40] GOETZ C G, TILLEY B C, SHAFTMAN S R, et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results [J]. Mov Disord, 2008, 23(15): 2129-70.
[41] GOETZ C G, POEWE W, RASCOL O, et al. Movement Disorder Society Task Force report on the Hoehn and Yahr staging scale: status and recommendations [J]. Mov Disord, 2004, 19(9): 1020-8.
[42] REIVICH M, KUHL D, WOLF A, et al. The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man [J]. Circulation research, 1979, 44(1): 127-37.
[43] LóPEZ-GONZáLEZ F J, SILVA-RODRíGUEZ J, PAREDES-PACHECO J, et al. Intensity normalization methods in brain FDG-PET quantification [J]. NeuroImage, 2020, 222: 117229.
[44] LATORRE A, ROCCHI L, MAGRINELLI F, et al. Unravelling the enigma of cortical tremor and other forms of cortical myoclonus [J]. Brain : a journal of neurology, 2020, 143(9): 2653-63.
[45] FRITSCH T, SMYTH K A, WALLENDAL M S, et al. Parkinson disease: research update and clinical management [J]. South Med J, 2012, 105(12): 650-6.
[46] BLOEM B R, OKUN M S, KLEIN C. Parkinson’s disease [J]. Lancet, 2021, 397(10291): 2284-303.
[47] HIRSCH L, JETTE N, FROLKIS A, et al. The Incidence of Parkinson’s Disease: A Systematic Review and Meta-Analysis [J]. Neuroepidemiology, 2016, 46(4): 292-300.
[48] DEUSCHL G, BEGHI E, FAZEKAS F, et al. The burden of neurological diseases in Europe: an analysis for the Global Burden of Disease Study 2017 [J]. Lancet Public Health, 2020, 5(10): e551-e67.
[49] DEXTER D T, JENNER P. Parkinson disease: from pathology to molecular disease mechanisms [J]. Free Radic Biol Med, 2013, 62: 132-44.
[50] LEI J, TANG L L, YOU H J. Pathological pain: Non-motor manifestations in Parkinson disease and its treatment [J]. Neurosci Biobehav Rev, 2024, 161: 105646.
[51] MARINUS J, ZHU K, MARRAS C, et al. Risk factors for non-motor symptoms in Parkinson’s disease [J]. Lancet Neurol, 2018, 17(6): 559-68.
[52] CONG S, XIANG C, ZHANG S, et al. Prevalence and clinical aspects of depression in Parkinson’s disease: A systematic review and meta‑analysis of 129 studies [J]. Neurosci Biobehav Rev, 2022, 141: 104749.
[53] BANG Y, LIM J, CHOI H J. Recent advances in the pathology of prodromal non-motor symptoms olfactory deficit and depression in Parkinson’s disease: clues to early diagnosis and effective treatment [J]. Arch Pharm Res, 2021, 44(6): 588-604.
[54] QUINN N. Multiple system atrophy–the nature of the beast [J]. J Neurol Neurosurg Psychiatry, 1989, Suppl(Suppl): 78-89.
[55] OZAWA T, ONODERA O. Multiple system atrophy: clinicopathological characteristics in Japanese patients [J]. Proc Jpn Acad Ser B Phys Biol Sci, 2017, 93(5): 251-8.
[56] BJORNSDOTTIR A, GUDMUNDSSON G, BLONDAL H, et al. Incidence and prevalence of multiple system atrophy: a nationwide study in Iceland [J]. J Neurol Neurosurg Psychiatry, 2013, 84(2): 136-40.
[57] BOWER J H, MARAGANORE D M, MCDONNELL S K, et al. Incidence of progressive supranuclear palsy and multiple system atrophy in Olmsted County, Minnesota, 1976 to 1990 [J]. Neurology, 1997, 49(5): 1284-8.
[58] CHRYSOSTOME V, TISON F, YEKHLEF F, et al. Epidemiology of multiple system atrophy: a prevalence and pilot risk factor study in Aquitaine, France [J]. Neuroepidemiology, 2004, 23(4): 201-8.
[59] SCHRAG A, BEN-SHLOMO Y, QUINN N P. Prevalence of progressive supranuclear palsy and multiple system atrophy: a cross-sectional study [J]. Lancet, 1999, 354(9192): 1771-5.
[60] XIA C, POSTUMA R B. Diagnosing multiple system atrophy at the prodromal stage [J]. Clin Auton Res, 2020, 30(3): 197-205.
[61] GUREVICH T, MERKIN L, ROZENBERG A, et al. Interrelationships between Survival, Sex, and Blood Pressure in Patients with Multiple System Atrophy [J]. Neuroepidemiology, 2021: 1-6.
[62] HU W Z, CAO L X, YIN J H, et al. Non-motor symptoms in multiple system atrophy: A comparative study with Parkinson’s disease and progressive supranuclear palsy [J]. Front Neurol, 2022, 13: 1081219.
[63] WILLIAMS D R, HOLTON J L, STRAND C, et al. Pathological tau burden and distribution distinguishes progressive supranuclear palsy-parkinsonism from Richardson’s syndrome [J]. Brain, 2007, 130(Pt 6): 1566-76.
[64] WILLIAMS D R, DE SILVA R, PAVIOUR D C, et al. Characteristics of two distinct clinical phenotypes in pathologically proven progressive supranuclear palsy: Richardson’s syndrome and PSP-parkinsonism [J]. Brain, 2005, 128(Pt 6): 1247-58.
[65] TAKIGAWA H, KITAYAMA M, WADA-ISOE K, et al. Prevalence of progressive supranuclear palsy in Yonago: change throughout a decade [J]. Brain Behav, 2016, 6(12): e00557.
[66] ABUSRAIR A H, ELSEKAILY W, BOHLEGA S. Tremor in Parkinson’s Disease: From Pathophysiology to Advanced Therapies [J]. Tremor Other Hyperkinet Mov (N Y), 2022, 12: 29.
[67] STACY M. The wearing-off phenomenon and the use of questionnaires to facilitate its recognition in Parkinson’s disease [J]. J Neural Transm (Vienna), 2010, 117(7): 837-46.
[68] ENCARNACION E V, HAUSER R A. Levodopa-induced dyskinesias in Parkinson’s disease: etiology, impact on quality of life, and treatments [J]. Eur Neurol, 2008, 60(2): 57-66.
[69] AHLSKOG J E, MUENTER M D. Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature [J]. Mov Disord, 2001, 16(3): 448-58.
[70] BERG D, POSTUMA R B, ADLER C H, et al. MDS research criteria for prodromal Parkinson’s disease [J]. Mov Disord, 2015, 30(12): 1600-11.
[71] GOETZ C G, FAHN S, MARTINEZ-MARTIN P, et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Process, format, and clinimetric testing plan [J]. Mov Disord, 2007, 22(1): 41-7.
[72] RACITI L, NICOLETTI A, MOSTILE G, et al. Accuracy of MDS-UPDRS section IV for detecting motor fluctuations in Parkinson’s disease [J]. Neurol Sci, 2019, 40(6): 1271-3.
[73] 曲艳, 李晓红, 孙亚南, et al. 汉化版MDS-UPDRS与传统UPDRS评测帕金森病的比较分析 [J]. 中国康复理论与实践, 2019, 25(08): 936-9.
[74] WILLS A M, PANTELYAT A, ESPAY A, et al. A Modified Progressive Supranuclear Palsy Rating Scale for Virtual Assessments [J]. Mov Disord, 2022, 37(6): 1265-71.
[75] GRöTSCH M T, RESPONDEK G, COLOSIMO C, et al. A Modified Progressive Supranuclear Palsy Rating Scale [J]. Mov Disord, 2021, 36(5): 1203-15.
[76] WENNING G K, TISON F, SEPPI K, et al. Development and validation of the Unified Multiple System Atrophy Rating Scale (UMSARS) [J]. Mov Disord, 2004, 19(12): 1391-402.
[77] ONDO W, HASHEM V, LEWITT P A, et al. Comparison of the Fahn-Tolosa-Marin Clinical Rating Scale and the Essential Tremor Rating Assessment Scale [J]. Mov Disord Clin Pract, 2018, 5(1): 60-5.
[78] BAIN P G, FINDLEY L J, ATCHISON P, et al. Assessing tremor severity [J]. J Neurol Neurosurg Psychiatry, 1993, 56(8): 868-73.
[79] BAIN P G, MALLY J, GRESTY M, et al. Assessing the impact of essential tremor on upper limb function [J]. J Neurol, 1993, 241(1): 54-61.
[80] FRANCHIGNONI F, HORAK F, GODI M, et al. Using psychometric techniques to improve the Balance Evaluation Systems Test: the mini-BESTest [J]. J Rehabil Med, 2010, 42(4): 323-31.
[81] BEHRMAN A L, LIGHT K E, FLYNN S M, et al. Is the functional reach test useful for identifying falls risk among individuals with Parkinson’s disease? [J]. Arch Phys Med Rehabil, 2002, 83(4): 538-42.
[82] PODSIADLO D, RICHARDSON S. The timed “Up & Go”: a test of basic functional mobility for frail elderly persons [J]. J Am Geriatr Soc, 1991, 39(2): 142-8.
[83] MORRIS M, IANSEK R, MCGINLEY J, et al. Three-dimensional gait biomechanics in Parkinson’s disease: evidence for a centrally mediated amplitude regulation disorder [J]. Mov Disord, 2005, 20(1): 40-50.
[84] SIGGEIRSDóTTIR K, JóNSSON B Y, JóNSSON H, JR., et al. The timed ‘Up & Go’ is dependent on chair type [J]. Clin Rehabil, 2002, 16(6): 609-16.
[85] RIDAO-FERNáNDEZ C, PINERO-PINTO E, CHAMORRO-MORIANA G. Observational Gait Assessment Scales in Patients with Walking Disorders: Systematic Review [J]. Biomed Res Int, 2019, 2019: 2085039.
[86] MOLINA-RUEDA F, CARRATALá-TEJADA M, CANO DE LA CUERDA R, et al. Examination of the reliability of Gait Assessment and Intervention Tool in patients with a stroke [J]. Int J Rehabil Res, 2018, 41(1): 84-6.
[87] FERRARELLO F, BIANCHI V A, BACCINI M, et al. Tools for observational gait analysis in patients with stroke: a systematic review [J]. Phys Ther, 2013, 93(12): 1673-85.
[88] LEDDY A L, CROWNER B E, EARHART G M. Functional gait assessment and balance evaluation system test: reliability, validity, sensitivity, and specificity for identifying individuals with Parkinson disease who fall [J]. Phys Ther, 2011, 91(1): 102-13.
[89] GOR-GARCíA-FOGEDA M D, CANO-DE-LA-CUERDA R, DALY J J, et al. Construct Validity of the Gait Assessment and Intervention Tool (GAIT) in People With Multiple Sclerosis [J]. Pm r, 2021, 13(3): 307-13.
[90] KLUCKEN J, BARTH J, KUGLER P, et al. Unbiased and mobile gait analysis detects motor impairment in Parkinson’s disease [J]. PLoS One, 2013, 8(2): e56956.
[91] PAUL S S, CANNING C G, SHERRINGTON C, et al. Three simple clinical tests to accurately predict falls in people with Parkinson’s disease [J]. Mov Disord, 2013, 28(5): 655-62.
[92] NEMANICH S T, DUNCAN R P, DIBBLE L E, et al. Predictors of gait speeds and the relationship of gait speeds to falls in men and women with Parkinson disease [J]. Parkinsons Dis, 2013, 2013: 141720.
[93] TANJI H, GRUBER-BALDINI A L, ANDERSON K E, et al. A comparative study of physical performance measures in Parkinson’s disease [J]. Mov Disord, 2008, 23(13): 1897-905.
[94] SCHENKMAN M, CUTSON T M, KUCHIBHATLA M, et al. Reliability of impairment and physical performance measures for persons with Parkinson’s disease [J]. Phys Ther, 1997, 77(1): 19-27.
[95] FALVO M J, EARHART G M. Six-minute walk distance in persons with Parkinson disease: a hierarchical regression model [J]. Arch Phys Med Rehabil, 2009, 90(6): 1004-8.
[96] BLOEM B R, MARINUS J, ALMEIDA Q, et al. Measurement instruments to assess posture, gait, and balance in Parkinson’s disease: Critique and recommendations [J]. Mov Disord, 2016, 31(9): 1342-55.
[97] GAL O, POLAKOVA K, BROZOVA H, et al. Validation of the Freezing of Gait Questionnaire in patients with Parkinson’s disease treated with deep brain stimulation [J]. Neurol Sci, 2020, 41(5): 1133-8.
[98] AMUNDSEN HUFFMASTER S L, LU C, TUITE P J, et al. The Transition from Standing to Walking Is Affected in People with Parkinson’s Disease and Freezing of Gait [J]. J Parkinsons Dis, 2020, 10(1): 233-43.
[99] MANCINI M, BLOEM B R, HORAK F B, et al. Clinical and methodological challenges for assessing freezing of gait: Future perspectives [J]. Mov Disord, 2019, 34(6): 783-90.
[100] SPANAKIS E G, SANTANA S, TSIKNAKIS M, et al. Technology-Based Innovations to Foster Personalized Healthy Lifestyles and Well-Being: A Targeted Review [J]. J Med Internet Res, 2016, 18(6): e128.
[101] KIM E, HELAL S, COOK D. Human Activity Recognition and Pattern Discovery [J]. IEEE Pervasive Comput, 2010, 9(1): 48.
[102] HANDOJOSENO A M, SHINE J M, NGUYEN T N, et al. The detection of Freezing of Gait in Parkinson’s disease patients using EEG signals based on Wavelet decomposition [J]. Annu Int Conf IEEE Eng Med Biol Soc, 2012, 2012: 69-72.
[103] RISSANEN S, KANKAANPää M, TARVAINEN M P, et al. Analysis of surface EMG signal morphology in Parkinson’s disease [J]. Physiol Meas, 2007, 28(12): 1507-21.
[104] RISSANEN S M, KANKAANPää M, MEIGAL A, et al. Surface EMG and acceleration signals in Parkinson’s disease: feature extraction and cluster analysis [J]. Med Biol Eng Comput, 2008, 46(9): 849-58.
[105] RUONALA V, MEIGAL A, RISSANEN S M, et al. EMG signal morphology in essential tremor and Parkinson’s disease [J]. Annu Int Conf IEEE Eng Med Biol Soc, 2013, 2013: 5765-8.
[106] SALARIAN A, RUSSMANN H, WIDER C, et al. Quantification of tremor and bradykinesia in Parkinson’s disease using a novel ambulatory monitoring system [J]. IEEE Trans Biomed Eng, 2007, 54(2): 313-22.
[107] SALARIAN A, RUSSMANN H, VINGERHOETS F J, et al. Gait assessment in Parkinson’s disease: toward an ambulatory system for long-term monitoring [J]. IEEE Trans Biomed Eng, 2004, 51(8): 1434-43.
[108] PATEL S, LORINCZ K, HUGHES R, et al. Monitoring motor fluctuations in patients with Parkinson’s disease using wearable sensors [J]. IEEE Trans Inf Technol Biomed, 2009, 13(6): 864-73.
[109] PATEL S, CHEN B R, BUCKLEY T, et al. Home monitoring of patients with Parkinson’s disease via wearable technology and a web-based application [J]. Annu Int Conf IEEE Eng Med Biol Soc, 2010, 2010: 4411-4.
[110] DE VOS M, PRINCE J, BUCHANAN T, et al. Discriminating progressive supranuclear palsy from Parkinson’s disease using wearable technology and machine learning [J]. Gait Posture, 2020, 77: 257-63.
[111] VAN DIEST M, STEGENGA J, WöRTCHE H J, et al. Suitability of Kinect for measuring whole body movement patterns during exergaming [J]. J Biomech, 2014, 47(12): 2925-32.
[112] HASS E W, SORRENTINO Z A, XIA Y, et al. Disease-, region- and cell type specific diversity of α-synuclein carboxy terminal truncations in synucleinopathies [J]. Acta Neuropathol Commun, 2021, 9(1): 146.
[113] CHOUGAR L, ARSOVIC E, GAURAV R, et al. Regional Selectivity of Neuromelanin Changes in the Substantia Nigra in Atypical Parkinsonism [J]. Mov Disord, 2022, 37(6): 1245-55.
[114] MADELEIN VAN DER STOUWE A M, NIEUWHOF F, HELMICH R C. Tremor pathophysiology: lessons from neuroimaging [J]. Curr Opin Neurol, 2020, 33(4): 474-81.
[115] DIRKX M F, DEN OUDEN H, AARTS E, et al. The Cerebral Network of Parkinson’s Tremor: An Effective Connectivity fMRI Study [J]. J Neurosci, 2016, 36(19): 5362-72.
[116] DIRKX M F, DEN OUDEN H E, AARTS E, et al. Dopamine controls Parkinson’s tremor by inhibiting the cerebellar thalamus [J]. Brain, 2017, 140(3): 721-34.
[117] HELMICH R C. The cerebral basis of Parkinsonian tremor: A network perspective [J]. Mov Disord, 2018, 33(2): 219-31.
[118] HELMICH R C, HALLETT M, DEUSCHL G, et al. Cerebral causes and consequences of parkinsonian resting tremor: a tale of two circuits? [J]. Brain, 2012, 135(Pt 11): 3206-26.
[119] DIRKX M F, BOLOGNA M. The pathophysiology of Parkinson’s disease tremor [J]. J Neurol Sci, 2022, 435: 120196.
[120] KREMER N I, PAUWELS R W J, POZZI N G, et al. Deep Brain Stimulation for Tremor: Update on Long-Term Outcomes, Target Considerations and Future Directions [J]. J Clin Med, 2021, 10(16).
[121] JELLINGER K A. Neuropathology of sporadic Parkinson’s disease: evaluation and changes of concepts [J]. Mov Disord, 2012, 27(1): 8-30.
[122] SAINSILY-CESARUS A, SCHMITT E, LANDRE L, et al. Dementia with Lewy bodies and gait neural basis: a cross-sectional study [J]. Alzheimers Res Ther, 2024, 16(1): 170.
[123] SINTINI I, KAUFMAN K, BOTHA H, et al. Neuroimaging correlates of gait abnormalities in progressive supranuclear palsy [J]. Neuroimage Clin, 2021, 32: 102850.
[124] MAILLET A, POLLAK P, DEBû B. Imaging gait disorders in parkinsonism: a review [J]. J Neurol Neurosurg Psychiatry, 2012, 83(10): 986-93.
[125] ZWERGAL A, LA FOUGèRE C, LORENZL S, et al. Functional disturbance of the locomotor network in progressive supranuclear palsy [J]. Neurology, 2013, 80(7): 634-41.
[126] CAI J, KIM J L, BAUMEISTER T R, et al. A Multi-sequence MRI Study in Parkinson’s Disease: Association Between Rigidity and Myelin [J]. J Magn Reson Imaging, 2022, 55(2): 451-62.
[127] POSTON K L, UA CRUADHLAOICH M A I, SANTOSO L F, et al. Substantia Nigra Volume Dissociates Bradykinesia and Rigidity from Tremor in Parkinson’s Disease: A 7 Tesla Imaging Study [J]. J Parkinsons Dis, 2020, 10(2): 591-604.
[128] KERSTENS V S, FAZIO P, SUNDGREN M, et al. [(18)F]FE-PE2I DAT correlates with Parkinson’s disease duration, stage, and rigidity/bradykinesia scores: a PET radioligand validation study [J]. EJNMMI Res, 2023, 13(1): 29.

To cite this abstract in AMA style:

JX. Wang, B. Wang, XH. Chen, W. Luo. Differentiating Parkinsonism and related diseases by specific Parkinsonism patterns [abstract]. Mov Disord. 2025; 40 (suppl 1). https://www.mdsabstracts.org/abstract/differentiating-parkinsonism-and-related-diseases-by-specific-parkinsonism-patterns/. Accessed October 6, 2025.
  • Tweet
  • Click to email a link to a friend (Opens in new window) Email
  • Click to print (Opens in new window) Print

« Back to 2025 International Congress

MDS Abstracts - https://www.mdsabstracts.org/abstract/differentiating-parkinsonism-and-related-diseases-by-specific-parkinsonism-patterns/

Most Viewed Abstracts

  • This Week
  • This Month
  • All Time
  • What is the appropriate sleep position for Parkinson's disease patients with orthostatic hypotension in the morning?
  • Covid vaccine induced parkinsonism and cognitive dysfunction
  • Life expectancy with and without Parkinson’s disease in the general population
  • Increased Risks of Botulinum Toxin Injection in Patients with Hypermobility Ehlers Danlos Syndrome: A Case Series
  • AI-Powered Detection of Freezing of Gait Using Wearable Sensor Data in Patients with Parkinson’s Disease
  • Effect of Ketone Ester Supplementation on Motor and Non-Motor symptoms in Parkinson's Disease
  • Covid vaccine induced parkinsonism and cognitive dysfunction
  • What is the appropriate sleep position for Parkinson's disease patients with orthostatic hypotension in the morning?
  • Life expectancy with and without Parkinson’s disease in the general population
  • Increased Risks of Botulinum Toxin Injection in Patients with Hypermobility Ehlers Danlos Syndrome: A Case Series
  • Increased Risks of Botulinum Toxin Injection in Patients with Hypermobility Ehlers Danlos Syndrome: A Case Series
  • Insulin dependent diabetes and hand tremor
  • Improvement in hand tremor following carpal tunnel release surgery
  • Impact of expiratory muscle strength training (EMST) on phonatory performance in Parkinson's patients
  • Help & Support
  • About Us
  • Cookies & Privacy
  • Wiley Job Network
  • Terms & Conditions
  • Advertisers & Agents
Copyright © 2025 International Parkinson and Movement Disorder Society. All Rights Reserved.
Wiley