MDS Abstracts

Abstracts from the International Congress of Parkinson’s and Movement Disorders.

MENU 
  • Home
  • Meetings Archive
    • 2025 International Congress
    • 2024 International Congress
    • 2023 International Congress
    • 2022 International Congress
    • MDS Virtual Congress 2021
    • MDS Virtual Congress 2020
    • 2019 International Congress
    • 2018 International Congress
    • 2017 International Congress
    • 2016 International Congress
  • Keyword Index
  • Resources
  • Advanced Search

A Biomarker-Directed Approach to the Early Diagnosis of Parkinson’s Disease Using Artificial Intelligence and Machine Learning

ME. Mellaci (SÃO PAULO, Brazil)

Meeting: 2025 International Congress

Keywords: Dopamine, Neurophysiology, Parkinson’s

Category: Parkinson's Disease: Pathophysiology / molecular mechanisms of disease

Objective: The main purpose of this study was to assess how AI and ML methods integrate multiple biomarkers for diagnosing Parkinson’s Disease (PD) to improve diagnostic accuracy and patient risk stratification. 

Background: PD is a long-term neurodegenerative disease currently diagnosed based on motor symptoms, leading to delayed diagnosis and medical care. Neuroimaging, biofluids, genetics, and digital health biomarkers have been explored as potential ways to detect the disease earlier. AI/ML systems analyze vast, complex datasets to detect subtle disease patterns before clinical symptoms appear, redefining early diagnosis and treatment approaches.

Method: This study is based on a systematic review of 63 PubMed-indexed articles published in the last decade, selecting original research, systematic reviews, and meta-analyses applying AI/ML to PD biomarker detection.

Results: The results show that AI-assisted analysis of speech patterns and gait abnormalities identifies prodromal PD more accurately than conventional evaluations. Retinal imaging biomarkers correlated with dopaminergic loss and may serve as noninvasive diagnostic tools. ML models applied to neuromelanin MRI, PET, and SPECT refine PD differentiation from atypical parkinsonisms and enhance diagnostic accuracy. Metabolic and inflammatory profiles in cerebrospinal fluid and plasma exosomes identified molecular signatures of early PD, increasing diagnostic specificity. AI-based genetic models improved PD risk prediction through polygenic risk scores. The reviewed studies also showed the effectiveness of AI in optimizing real-time deep brain stimulation (DBS) parameters and reducing motor fluctuations.

Conclusion: However, challenges remain, including database standardization, algorithm bias, and clinical validation of predictive models. The integration of AI and ML with multimodal biomarkers is a promising approach to improving early diagnosis, assessing disease progression, and personalizing PD treatment. Digital health technologies, advanced neuroimaging, and biochemical biomarkers are shifting PD diagnosis and management. Further studies should focus on data integration, large-scale trials, and improving algorithm interpretability to ensure AI-based diagnostic solutions are readily implemented in clinical practice.

References: 1- Gupta R, Kumari S, Senapati A, Ambasta RK, Kumar P. New era of artificial intelligence and machine learning-based detection, diagnosis, and therapeutics in Parkinson’s disease. Ageing Res Rev. 2023 Sep;90:102013. doi: 10.1016/j.arr.2023.102013. Epub 2023 Jul 8. PMID: 37429545.

2- Salvioli S, Basile MS, Bencivenga L, Carrino S, Conte M, Damanti S, De Lorenzo R, Fiorenzato E, Gialluisi A, Ingannato A, Antonini A, Baldini N, Capri M, Cenci S, Iacoviello L, Nacmias B, Olivieri F, Rengo G, Querini PR, Lattanzio F. Biomarkers of aging in frailty and age-associated disorders: State of the art and future perspective. Ageing Res Rev. 2023 Nov;91:102044. doi: 10.1016/j.arr.2023.102044. Epub 2023 Aug 28. PMID: 37647997.

3- Reddy A, Reddy RP, Roghani AK, Garcia RI, Khemka S, Pattoor V, Jacob M, Reddy PH, Sehar U. Artificial intelligence in Parkinson’s disease: Early detection and diagnostic advancements. Ageing Res Rev. 2024 Aug;99:102410. doi: 10.1016/j.arr.2024.102410. Epub 2024 Jul 5. PMID: 38972602.

4- Mei J, Desrosiers C, Frasnelli J. Machine Learning for the Diagnosis of Parkinson’s Disease: A Review of Literature. Front Aging Neurosci. 2021 May 6;13:633752. doi: 10.3389/fnagi.2021.633752. PMID: 34025389; PMCID: PMC8134676.

5- Tuominen RK, Renko JM. Biomarkers of Parkinson’s disease in perspective of early diagnosis and translation of neurotrophic therapies. Basic Clin Pharmacol Toxicol. 2024 Sep;135(3):271-284. doi: 10.1111/bcpt.14042. Epub 2024 Jul 8. PMID: 38973499.

6- Bhat S, Acharya UR, Hagiwara Y, Dadmehr N, Adeli H. Parkinson’s disease: Cause factors, measurable indicators, and early diagnosis. Comput Biol Med. 2018 Nov 1;102:234-241. doi: 10.1016/j.compbiomed.2018.09.008. Epub 2018 Sep 20. PMID: 30253869.

7- Angelini G, Malvaso A, Schirripa A, Campione F, D’Addario SL, Toschi N, Caligiore D. Unraveling sex differences in Parkinson’s disease through explainable machine learning. J Neurol Sci. 2024 Jul 15;462:123091. doi: 10.1016/j.jns.2024.123091. Epub 2024 Jun 8. PMID: 38870732.

8- di Biase L, Pecoraro PM, Pecoraro G, Shah SA, Di Lazzaro V. Machine learning and wearable sensors for automated Parkinson’s disease diagnosis aid: a systematic review. J Neurol. 2024 Oct;271(10):6452-6470. doi: 10.1007/s00415-024-12611-x. Epub 2024 Aug 14. PMID: 39143345.

9- Garcia Santa Cruz B, Husch A, Hertel F. Machine learning models for diagnosis and prognosis of Parkinson’s disease using brain imaging: general overview, main challenges, and future directions. Front Aging Neurosci. 2023 Jul 19;15:1216163. doi: 10.3389/fnagi.2023.1216163. PMID: 37539346; PMCID: PMC10394631.

10- Bougea A. Digital biomarkers in Parkinson’s disease. Adv Clin Chem. 2024;123:221-253. doi: 10.1016/bs.acc.2024.06.005. Epub 2024 Jun 22. PMID: 39181623.

11- Dennis AP, Strafella AP. The role of AI and machine learning in the diagnosis of Parkinson’s disease and atypical parkinsonisms. Parkinsonism Relat Disord. 2024 Sep;126:106986. doi: 10.1016/j.parkreldis.2024.106986. Epub 2024 May 3. PMID: 38724317.

12- Su C, Tong J, Wang F. Mining genetic and transcriptomic data using machine learning approaches in Parkinson’s disease. NPJ Parkinsons Dis. 2020 Sep 9;6:24. doi: 10.1038/s41531-020-00127-w. PMID: 32964109; PMCID: PMC7481248.

13- Chudzik A, Śledzianowski A, Przybyszewski AW. Machine Learning and Digital Biomarkers Can Detect Early Stages of Neurodegenerative Diseases. Sensors (Basel). 2024 Feb 29;24(5):1572. doi: 10.3390/s24051572. PMID: 38475108; PMCID: PMC10934426.

14- Rana A, Dumka A, Singh R, Panda MK, Priyadarshi N. A Computerized Analysis with Machine Learning Techniques for the Diagnosis of Parkinson’s Disease: Past Studies and Future Perspectives. Diagnostics (Basel). 2022 Nov 5;12(11):2708. doi: 10.3390/diagnostics12112708. PMID: 36359550; PMCID: PMC9689408.

15- Oliveira AM, Coelho L, Carvalho E, Ferreira-Pinto MJ, Vaz R, Aguiar P. Machine learning for adaptive deep brain stimulation in Parkinson’s disease: closing the loop. J Neurol. 2023 Nov;270(11):5313-5326. doi: 10.1007/s00415-023-11873-1. Epub 2023 Aug 2. PMID: 37530789; PMCID: PMC10576725.

16- Kwon DH, Hwang JS, Kim SG, Jang YE, Shin TH, Lee G. Cerebrospinal Fluid Metabolome in Parkinson’s Disease and Multiple System Atrophy. Int J Mol Sci. 2022 Feb 7;23(3):1879. doi: 10.3390/ijms23031879. PMID: 35163800; PMCID: PMC8836409.

17- Paul S, Maindarkar M, Saxena S, Saba L, Turk M, Kalra M, Krishnan PR, Suri JS. Bias Investigation in Artificial Intelligence Systems for Early Detection of Parkinson’s Disease: A Narrative Review. Diagnostics (Basel). 2022 Jan 11;12(1):166. doi: 10.3390/diagnostics12010166. PMID: 35054333; PMCID: PMC8774851.

18- Wu P, Cao B, Liang Z, Wu M. The advantages of artificial intelligence-based gait assessment in detecting, predicting, and managing Parkinson’s disease. Front Aging Neurosci. 2023 Jul 12;15:1191378. doi: 10.3389/fnagi.2023.1191378. PMID: 37502426; PMCID: PMC10368956.

19- Wang H, Pujos-Guillot E, Comte B, de Miranda JL, Spiwok V, Chorbev I, Castiglione F, Tieri P, Watterson S, McAllister R, de Melo Malaquias T, Zanin M, Rai TS, Zheng H. Deep learning in systems medicine. Brief Bioinform. 2021 Mar 22;22(2):1543-1559. doi: 10.1093/bib/bbaa237. PMID: 33197934; PMCID: PMC8382976.

20- Rana A, Dumka A, Singh R, Panda MK, Priyadarshi N, Twala B. Imperative Role of Machine Learning Algorithm for Detection of Parkinson’s Disease: Review, Challenges and Recommendations. Diagnostics (Basel). 2022 Aug 19;12(8):2003. doi: 10.3390/diagnostics12082003. PMID: 36010353; PMCID: PMC9407112.

21- Glaab E. Computational systems biology approaches for Parkinson’s disease. Cell Tissue Res. 2018 Jul;373(1):91-109. doi: 10.1007/s00441-017-2734-5. Epub 2017 Nov 29. PMID: 29185073; PMCID: PMC6015628.

22- Rabbani N. AGEomics Biomarkers and Machine Learning-Realizing the Potential of Protein Glycation in Clinical Diagnostics. Int J Mol Sci. 2022 Apr 21;23(9):4584. doi: 10.3390/ijms23094584. PMID: 35562975; PMCID: PMC9099912.

23- Wang X, Dong T, Li X, Yu W, Jia Z, Liu Y, Yang J. Global biomarker trends in Parkinson’s disease research: A bibliometric analysis. Heliyon. 2024 Mar 6;10(6):e27437. doi: 10.1016/j.heliyon.2024.e27437. PMID: 38501016; PMCID: PMC10945172.

24- Sharma P, Pahuja SK, Veer K. A Systematic Review of Machine Learning Based Gait Characteristics in Parkinson’s Disease. Mini Rev Med Chem. 2022;22(8):1216-1229. doi: 10.2174/1389557521666210927151553. PMID: 34579631.

25- Dennis AP, Strafella AP. The identification of cognitive impairment in Parkinson’s disease using biofluids, neuroimaging, and artificial intelligence. Front Neurosci. 2024 Sep 26;18:1446878. doi: 10.3389/fnins.2024.1446878. PMID: 39403068; PMCID: PMC11472839.

26- Bratić B, Kurbalija V, Ivanović M, Oder I, Bosnić Z. Machine Learning for Predicting Cognitive Diseases: Methods, Data Sources and Risk Factors. J Med Syst. 2018 Oct 27;42(12):243. doi: 10.1007/s10916-018-1071-x. PMID: 30368611.

27- Vitale A, Villa R, Ugga L, Romeo V, Stanzione A, Cuocolo R. Artificial intelligence applied to neuroimaging data in Parkinsonian syndromes: Actuality and expectations. Math Biosci Eng. 2021 Feb 19;18(2):1753-1773. doi: 10.3934/mbe.2021091. PMID: 33757209.

28- Rangwala HS, Fatima H, Syed AM, Abbas SR, Rangwala BS. From Diagnosis to Treatment: A Comprehensive Review of Biomarkers and Therapeutic Advances in Parkinson’s Disease. Ann Neurosci. 2025 Jan;32(1):51-57. doi: 10.1177/09727531231200733. Epub 2023 Nov 1. PMID: 40017568; PMCID: PMC11863227.

29- He N, Chen Y, LeWitt PA, Yan F, Haacke EM. Application of Neuromelanin MR Imaging in Parkinson Disease. J Magn Reson Imaging. 2023 Feb;57(2):337-352. doi: 10.1002/jmri.28414. Epub 2022 Aug 26. PMID: 36017746; PMCID: PMC10086789.

30- Ghosh N, Sinha K, Sil PC. A review on the new age methodologies for early detection of Alzheimer’s and Parkinson’s disease. Basic Clin Pharmacol Toxicol. 2024 May;134(5):602-613. doi: 10.1111/bcpt.14003. Epub 2024 Mar 14. PMID: 38482977.

31 – Domínguez-Fernández C, Egiguren-Ortiz J, Razquin J, Gómez-Galán M, De Las Heras-García L, Paredes-Rodríguez E, Astigarraga E, Miguélez C, Barreda-Gómez G. Review of Technological Challenges in Personalised Medicine and Early Diagnosis of Neurodegenerative Disorders. Int J Mol Sci. 2023 Feb 7;24(4):3321. doi: 10.3390/ijms24043321. PMID: 36834733; PMCID: PMC9968142.

32- Sun M, Yan T, Liu R, Zhao X, Zhou X, Ma Y, Jia J. Predictive value of machine learning in diagnosing cognitive impairment in patients with Parkinson’s disease: a systematic review and meta-analysis. Ann Palliat Med. 2022 Dec;11(12):3775-3784. doi: 10.21037/apm-22-1396. PMID: 36636002.

33- Gnarra O, Wulf MA, Schäfer C, Nef T, Bassetti CLA. Rapid eye movement sleep behavior disorder: a narrative review from a technological perspective. Sleep. 2023 Jun 13;46(6):zsad030. doi: 10.1093/sleep/zsad030. PMID: 36789541.

34- Acharya S, Salgado-Somoza A, Stefanizzi FM, Lumley AI, Zhang L, Glaab E, May P, Devaux Y. Non-Coding RNAs in the Brain-Heart Axis: The Case of Parkinson’s Disease. Int J Mol Sci. 2020 Sep 6;21(18):6513. doi: 10.3390/ijms21186513. PMID: 32899928; PMCID: PMC7555192.

35- Loh HW, Hong W, Ooi CP, Chakraborty S, Barua PD, Deo RC, Soar J, Palmer EE, Acharya UR. Application of Deep Learning Models for Automated Identification of Parkinson’s Disease: A Review (2011-2021). Sensors (Basel). 2021 Oct 23;21(21):7034. doi: 10.3390/s21217034. PMID: 34770340; PMCID: PMC8587636.

36- Li N, Gao X, Zheng L, Huang Q, Zeng F, Chen H, Farag MA, Zhao C. Advances in fucoxanthin chemistry and management of neurodegenerative diseases. Phytomedicine. 2022 Oct;105:154352. doi: 10.1016/j.phymed.2022.154352. Epub 2022 Jul 21. PMID: 35917771.

37- Khaliq F, Oberhauser J, Wakhloo D, Mahajani S. Decoding degeneration: the implementation of machine learning for clinical detection of neurodegenerative disorders. Neural Regen Res. 2023 Jun;18(6):1235-1242. doi: 10.4103/1673-5374.355982. PMID: 36453399; PMCID: PMC9838151.

38- Falchetti M, Prediger RD, Zanotto-Filho A. Classification algorithms applied to blood-based transcriptome meta-analysis to predict idiopathic Parkinson’s disease. Comput Biol Med. 2020 Sep;124:103925. doi: 10.1016/j.compbiomed.2020.103925. Epub 2020 Aug 1. PMID: 32889300.

39- Fröhlich H, Bontridder N, Petrovska-Delacréta D, Glaab E, Kluge F, Yacoubi ME, Marín Valero M, Corvol JC, Eskofier B, Van Gyseghem JM, Lehericy S, Winkler J, Klucken J. Leveraging the Potential of Digital Technology for Better Individualized Treatment of Parkinson’s Disease. Front Neurol. 2022 Feb 28;13:788427. doi: 10.3389/fneur.2022.788427. PMID: 35295840; PMCID: PMC8918525.

40- Tan YY, Kang HG, Lee CJ, Kim SS, Park S, Thakur S, Da Soh Z, Cho Y, Peng Q, Lee K, Tham YC, Rim TH, Cheng CY. Prognostic potentials of AI in ophthalmology: systemic disease forecasting via retinal imaging. Eye Vis (Lond). 2024 May 6;11(1):17. doi: 10.1186/s40662-024-00384-3. Erratum in: Eye Vis (Lond). 2024 Aug 16;11(1):33. doi: 10.1186/s40662-024-00399-w. PMID: 38711111; PMCID: PMC11071258.

41- Chougar L, Pyatigorskaya N, Degos B, Grabli D, Lehéricy S. The Role of Magnetic Resonance Imaging for the Diagnosis of Atypical Parkinsonism. Front Neurol. 2020 Jul 17;11:665. doi: 10.3389/fneur.2020.00665. PMID: 32765399; PMCID: PMC7380089.

42- Rusz J, Krack P, Tripoliti E. From prodromal stages to clinical trials: The promise of digital speech biomarkers in Parkinson’s disease. Neurosci Biobehav Rev. 2024 Dec;167:105922. doi: 10.1016/j.neubiorev.2024.105922. Epub 2024 Oct 18. PMID: 39424108.

43- Gao P, Li X, Du X, Liu S, Xu Y. Diagnostic and Therapeutic Potential of Exosomes in Neurodegenerative Diseases. Front Aging Neurosci. 2021 Dec 16;13:790863. doi: 10.3389/fnagi.2021.790863. PMID: 34975460; PMCID: PMC8717921.

44- Calderone A, Latella D, Bonanno M, Quartarone A, Mojdehdehbaher S, Celesti A, Calabrò RS. Towards Transforming Neurorehabilitation: The Impact of Artificial Intelligence on Diagnosis and Treatment of Neurological Disorders. Biomedicines. 2024 Oct 21;12(10):2415. doi: 10.3390/biomedicines12102415. PMID: 39457727; PMCID: PMC11504847.

45- Singh K, Khare M, Khare A, Kohli N. Review on computational methods for the detection and classification of Parkinson’s Disease. Comput Biol Med. 2025 Mar;187:109767. doi: 10.1016/j.compbiomed.2025.109767. Epub 2025 Feb 11. PMID: 39938340.

46- Neumann WJ, Turner RS, Blankertz B, Mitchell T, Kühn AA, Richardson RM. Toward Electrophysiology-Based Intelligent Adaptive Deep Brain Stimulation for Movement Disorders. Neurotherapeutics. 2019 Jan;16(1):105-118. doi: 10.1007/s13311-018-00705-0. PMID: 30607748; PMCID: PMC6361070.

47- Latorre A, Rocchi L, Sadnicka A. The Expanding Horizon of Neural Stimulation for Hyperkinetic Movement Disorders. Front Neurol. 2021 May 14;12:669690. doi: 10.3389/fneur.2021.669690. PMID: 34054710; PMCID: PMC8160223.

48- Suri JS, Maindarkar MA, Paul S, Ahluwalia P, Bhagawati M, Saba L, Faa G, Saxena S, Singh IM, Chadha PS, Turk M, Johri A, Khanna NN, Viskovic K, Mavrogeni S, Laird JR, Miner M, Sobel DW, Balestrieri A, Sfikakis PP, Tsoulfas G, Protogerou AD, Misra DP, Agarwal V, Kitas GD, Kolluri R, Teji JS, Al-Maini M, Dhanjil SK, Sockalingam M, Saxena A, Sharma A, Rathore V, Fatemi M, Alizad A, Krishnan PR, Omerzu T, Naidu S, Nicolaides A, Paraskevas KI, Kalra M, Ruzsa Z, Fouda MM. Deep Learning Paradigm for Cardiovascular Disease/Stroke Risk Stratification in Parkinson’s Disease Affected by COVID-19: A Narrative Review. Diagnostics (Basel). 2022 Jun 24;12(7):1543. doi: 10.3390/diagnostics12071543. PMID: 35885449; PMCID: PMC9324237.

49- Kumar R, Waisberg E, Ong J, Paladugu P, Amiri D, Saintyl J, Yelamanchi J, Nahouraii R, Jagadeesan R, Tavakkoli A. Artificial Intelligence-Based Methodologies for Early Diagnostic Precision and Personalized Therapeutic Strategies in Neuro-Ophthalmic and Neurodegenerative Pathologies. Brain Sci. 2024 Dec 17;14(12):1266. doi: 10.3390/brainsci14121266. PMID: 39766465; PMCID: PMC11674895.

50- Huang G, Li R, Bai Q, Alty J. Multimodal learning of clinically accessible tests to aid diagnosis of neurodegenerative disorders: a scoping review. Health Inf Sci Syst. 2023 Jul 22;11(1):32. doi: 10.1007/s13755-023-00231-0. PMID: 37489153; PMCID: PMC10363100.

51- Steendam-Oldekamp E, van Laar T. The Effectiveness of Inpatient Rehabilitation in Parkinson’s Disease: A Systematic Review of Recent Studies. J Parkinsons Dis. 2024;14(s1):S93-S112. doi: 10.3233/JPD-230271. PMID: 38788087; PMCID: PMC11380234.

52- Rob M, Yousef M, Lakshmanan AP, Mahboob A, Terranegra A, Chaari A. Microbial signatures and therapeutic strategies in neurodegenerative diseases. Biomed Pharmacother. 2025 Mar;184:117905. doi: 10.1016/j.biopha.2025.117905. Epub 2025 Feb 10. PMID: 39933444.

53- Arghavani P, Daneshgar H, Sojdeh S, Edrisi M, Moosavi-Movahedi AA, Rabiee N. Porous Materials for Early Diagnosis of Neurodegenerative Diseases. Adv Healthc Mater. 2025 Jan 6:e2404685. doi: 10.1002/adhm.202404685. Epub ahead of print. PMID: 39763110.

54- Ghaderi S, Mohammadi M, Sayehmiri F, Mohammadi S, Tavasol A, Rezaei M, Ghalyanchi-Langeroudi A. Machine Learning Approaches to Identify Affected Brain Regions in Movement Disorders Using MRI Data: A Systematic Review and Diagnostic Meta-analysis. J Magn Reson Imaging. 2024 Dec;60(6):2518-2546. doi: 10.1002/jmri.29364. Epub 2024 Mar 27. PMID: 38538062.

55- Tröster AI. Developments in the prediction of cognitive changes following deep brain stimulation in persons with Parkinson’s disease. Expert Rev Neurother. 2024 Jul;24(7):643-659. doi: 10.1080/14737175.2024.2360121. Epub 2024 May 30. PMID: 38814926.

56- Outeiro TF, Höglinger G, Lang AE, Vieira TCRG. Protein misfolding: understanding biology to classify and treat synucleinopathies. J Neural Transm (Vienna). 2025 Feb 11. doi: 10.1007/s00702-025-02889-0. Epub ahead of print. PMID: 39932548.

57- Pacia SV. Sub-Scalp Implantable Telemetric EEG (SITE) for the Management of Neurological and Behavioral Disorders beyond Epilepsy. Brain Sci. 2023 Aug 8;13(8):1176. doi: 10.3390/brainsci13081176. PMID: 37626532; PMCID: PMC10452821.

58- Bhachawat S, Shriram E, Srinivasan K, Hu YC. Leveraging Computational Intelligence Techniques for Diagnosing Degenerative Nerve Diseases: A Comprehensive Review, Open Challenges, and Future Research Directions. Diagnostics (Basel). 2023 Jan 12;13(2):288. doi: 10.3390/diagnostics13020288. PMID: 36673100; PMCID: PMC9858227.

59- Law ZK, Todd C, Mehraram R, Schumacher J, Baker MR, LeBeau FEN, Yarnall A, Onofrj M, Bonanni L, Thomas A, Taylor JP. The Role of EEG in the Diagnosis, Prognosis and Clinical Correlations of Dementia with Lewy Bodies-A Systematic Review. Diagnostics (Basel). 2020 Aug 20;10(9):616. doi: 10.3390/diagnostics10090616. PMID: 32825520; PMCID: PMC7555753.

60- Akram AS, Grezenko H, Singh P, Ahmed M, Hassan BD, Hagenahalli Anand V, Elashry AA, Nazir F, Khan R. Advancing the Frontier: Neuroimaging Techniques in the Early Detection and Management of Neurodegenerative Diseases. Cureus. 2024 May 29;16(5):e61335. doi: 10.7759/cureus.61335. PMID: 38947709; PMCID: PMC11213966.

61- Balachandar A, Phokaewvarangkul O, Fasano A. Closed-loop systems for deep brain stimulation to treat neuropsychiatric disorders. Expert Rev Med Devices. 2024 Dec;21(12):1141-1152. doi: 10.1080/17434440.2024.2438309. Epub 2024 Dec 10. PMID: 39644189.

62- De Silva U, Madanian S, Olsen S, Templeton JM, Poellabauer C, Schneider SL, Narayanan A, Rubaiat R. Clinical Decision Support Using Speech Signal Analysis: Systematic Scoping Review of Neurological Disorders. J Med Internet Res. 2025 Jan 13;27:e63004. doi: 10.2196/63004. PMID: 39804693; PMCID: PMC11773292.

63- Campabadal A, Segura B, Junque C, Iranzo A. Structural and functional magnetic resonance imaging in isolated REM sleep behavior disorder: A systematic review of studies using neuroimaging software. Sleep Med Rev. 2021 Oct;59:101495. doi: 10.1016/j.smrv.2021.101495. Epub 2021 Apr 22. PMID: 33979733.

To cite this abstract in AMA style:

ME. Mellaci. A Biomarker-Directed Approach to the Early Diagnosis of Parkinson’s Disease Using Artificial Intelligence and Machine Learning [abstract]. Mov Disord. 2025; 40 (suppl 1). https://www.mdsabstracts.org/abstract/a-biomarker-directed-approach-to-the-early-diagnosis-of-parkinsons-disease-using-artificial-intelligence-and-machine-learning/. Accessed October 5, 2025.
  • Tweet
  • Click to email a link to a friend (Opens in new window) Email
  • Click to print (Opens in new window) Print

« Back to 2025 International Congress

MDS Abstracts - https://www.mdsabstracts.org/abstract/a-biomarker-directed-approach-to-the-early-diagnosis-of-parkinsons-disease-using-artificial-intelligence-and-machine-learning/

Most Viewed Abstracts

  • This Week
  • This Month
  • All Time
  • What is the appropriate sleep position for Parkinson's disease patients with orthostatic hypotension in the morning?
  • Covid vaccine induced parkinsonism and cognitive dysfunction
  • Life expectancy with and without Parkinson’s disease in the general population
  • Increased Risks of Botulinum Toxin Injection in Patients with Hypermobility Ehlers Danlos Syndrome: A Case Series
  • AI-Powered Detection of Freezing of Gait Using Wearable Sensor Data in Patients with Parkinson’s Disease
  • Effect of Ketone Ester Supplementation on Motor and Non-Motor symptoms in Parkinson's Disease
  • Covid vaccine induced parkinsonism and cognitive dysfunction
  • What is the appropriate sleep position for Parkinson's disease patients with orthostatic hypotension in the morning?
  • Life expectancy with and without Parkinson’s disease in the general population
  • Increased Risks of Botulinum Toxin Injection in Patients with Hypermobility Ehlers Danlos Syndrome: A Case Series
  • Increased Risks of Botulinum Toxin Injection in Patients with Hypermobility Ehlers Danlos Syndrome: A Case Series
  • Insulin dependent diabetes and hand tremor
  • Improvement in hand tremor following carpal tunnel release surgery
  • Impact of expiratory muscle strength training (EMST) on phonatory performance in Parkinson's patients
  • Help & Support
  • About Us
  • Cookies & Privacy
  • Wiley Job Network
  • Terms & Conditions
  • Advertisers & Agents
Copyright © 2025 International Parkinson and Movement Disorder Society. All Rights Reserved.
Wiley